

Quantum network technology - the second life of rare-earth crystals

Tittel Wolfgang

University of Geneva, Delft Technical University, Schaffhausen Institute of Technology

Abstract

Starting with the demonstration of lasing more than 50 years ago, the special properties of rare-earth crystals and glasses have enabled the development of numerous solid-state lasers and amplifiers, which are crucial for the functioning of today's Internet. As a fascinating generalization of their use in optical communication infrastructure, it became clear during the past decade that, when cooled to a few Kelvin, rare-earth crystals also promise the creation of technology for quantum communication networks.

I will discuss recent advances towards the development of key ingredients of such networks: the creation of single photons using individual rare-earth ions coupled to nano-photonic cavities, as well as the reversible storage of quantum states of light in large ensembles of rare-earth ions. This work is not only interesting from a fundamental point of view, but furthermore paves the path towards a quantum repeater, which will ultimately enable quantum communications over arbitrary distances.