

CP-03-02

The PhANTM algorithm: measurement-based generation and preservation of cat and grid states

Olivier Pfister

University of Virginia

Abstract

We present an algorithm to reliably generate various quantum states critical to quantum error correction and universal continuous-variable (CV) quantum computing, such as Schrödinger cat states and Gottesman-Kitaev-Preskill (GKP) grid states, out of Gaussian CV cluster states. Our algorithm is based on the Photon-counting-Assisted Node-Teleportation Method (PhANTM), which uses standard Gaussian information processing on the cluster state with only the addition of local photon-numberresolving measurements. We show that PhANTM can apply polynomial gates and embed cat states within the cluster. This method also stabilizes cat states against Gaussian noise and perpetuates non-Gaussianity within the cluster. Finally, we show that existing protocols for breeding cat states can be embedded into cluster state processing using PhANTM.